Booster Cogging

Robert Zwaska Fermilab

(University of Texas at Austin)

Accelerator Physics & Technology Seminar Dec. 8, 2005

Cogging

• Defined: adjusting the revolution frequency of bunched beam in a synchrotron to correspond to some external frequency

• Examples:

- > Centering collisions in an IR
 - e.g. Tevatron, RHIC
- > RF synchronous transfer between rings
 - Phaselock
- > Synchronization with external beam
 - Booster Cogging

THE PHASELOCK CODE

"Phaselock refers to experiments on the interconnectedness of the universe, where changes in one part, create instantaneous changes in the rest of the universe."

Example: Booster Phaselock

• Match $f_B = f_{MI}$, $\phi_B = \phi_{MI}$

Control beam's radial position

$$f_B(r) = \frac{hv(r)}{C(r)}$$

Need for a Notch

- Extraction kicker has risetime of ~ 40 ns
 - \triangleright Only ~ 10 ns between bunches
- Beam lost at 8 GeV during extraction
- Instead, beam is removed at 400 MeV
 - Reduces energy lost 20x
- Notch implemented for start of Run II and MiniBooNE
 - Reduces extraction loss 10x
- With a single batch, Booster determines beam position in the MI

Multi-Batch Operation

Main Injector

Circulating Beam

Booster Cogging

84 RF

buckets

Notch

- ➤ Notch must be coincident with kicker pulse
- ➤ Booster must be aligned with MI beam
- However:
 - > Accelerators are not synchronized
- Cogging aligns the azimuthal position of the notch with beam in the MI

Do it like phaselock?

- Revolution frequency is 1/84th of RF frequency
 - > 84x the distance to be moved
 - ➤ Needs longer time or larger bump
- Booster has no flattop
- Bump can only be slightly larger
 - ⇒Need to cog during acceleration

Cogging Proof of Principle

Pellico & Webber

Too Much Feedback

The Cogging System

• Controls:

- ➤ Booster Radial Position
- > Notching
- > Extraction

MI LLRF constraints

- > Frequency maintained
- Marker maintained
- Takes resets from the Booster
- GMPS feedforward
- Beam Information
 - ➤ MDAT & Booster Beam Gate
- Triggering
 - ➤ BDOT signal
 - > TCLK timing

Cogging Electronics

- Use the "Generic" Booster Board
 - ➤ Also for GMPS, BLMs, etc.
- Digital and analog inputs/outputs

- Altera FPGA for fast counting
- DSP for calculations

Measurements

- Monitor Notch position throughout the cycle
- Use Main Injector RF as a standard clock
- Booster RF frequency varies with energy
 - \rightarrow 38 \rightarrow 53 MHz

- Start counting on Main Injector revolution marker (every 11 μs)
- Stop Counting on Booster revolution marker (every 1.6-2.2 μs)
- Makes a table of positions (tripplan)

Booster Revolution Marker (Notch) Booster RF

> Main Injector Revolution Marker

Following the Notch

- PRF buckets slip at a rate $f_{MI} f_{B} \le 15 \text{ MHz}$
 - Notch wraps around the Booster many times
- Extraction with one batch
 - Count RF buckets to make a marker
 - Extract on marker
 - Reset Main Injector
- With several batches
 - Clean extraction is possible if total slippage is exactly the same cycle-to-cycle
 - Requires 1 in 1,000,000 consistency...

Relative Slippage

- In software, we calculate the relative slippage cycle-to cycle
 - Use a previous cycle as a baseline

Sources of Slippage

Any perturbation to RF will cause slippage

Slippage
$$(t) = \int_0^t dt' \Delta f_{RF}(t')$$

- Over 33 ms $\Delta f = 30$ Hz gives 1 bucket slippage
- $f = 37 53 \text{ MHZ} \rightarrow \text{part per million problem}$

- Several possible errors shown below:
 - Fig. 1 μs \Rightarrow 15 bucket slip
 - ➤ Magnet Frequency: 1 mHz \Rightarrow 6 bucket slip
 - Minimum Magnet current (δp_i) : 1/10,000 \Rightarrow 10 bucket slip
 - Maximum Magnet current (δp_e) : 1/10,000 \Rightarrow 7 bucket slip

Timing Errors

- TCLK trigger is predicted from the Bdot of the previous cycles
 - Needs to occur few ms before the minimum
- Small variation in 15 Hz frequency can lead to µs errors

Fix: trigger data-taking on magnet minimum instead of clock

- MI markers come at arbitrary times w.r.t. trigger
- Leads to a timing error of as much as 11 μs
- Solution ⇒ Generate an internal marker synchronized to the cogging start

GMPS Regulation

- Pulsed devices drag line current down
 - > Particularly, RF & bias supplies
- Lower line current reduces power input to GMPS

 Apply feedforward correction to GMPS inputs

Error Corrections

• Also need MI to maintain reference RF frequency

Predictive Notching

- Delay creation of the notch 5 ms
 - > Use information of that period
 - ➤ Make notch anticipating further slippage.

Radially Induced Slippage

- Induced slippage scales with radial offset
 - \triangleright Rates of $\sim 1 \text{ kHz/mm}$

Proportional Feedback

- Notch using prediction
- Radial Feedback late in the cycle
- $\Delta r = k \cdot \Delta S$
 - > Exponential damping
 - \geqslant k \approx 0.2 mm / bucket
 - \triangleright e-folding time ≈ 10 ms

Transition

Proportional

Feedback

Higher Gain

Causes beam loss

Sustained (Flat) Feedback

- Flat & proportional feedbacks
 - > Small error goes to proportional feedback
 - Gigher Gain
 - Larger errors go to a large constant value of feedback
 - Stay there until error is small

Final Cogging Algoritm

- Notch delayed, and placed in anticipation of slippage
 - Pre-transition bump
 - Uses a prediction algorithm
 - Reduces post-trans. cogging necessary
 - Flat feedback is the same as above
 - Proportional feedback is doubled

Figure of Merit: Extraction Losses

- Cogging reduces extraction losses substantially
 - ➤ 80-90%, depending on conditions
- Occasional misses caused by phaselock or small timing errors
 - Override reduces phaselock losses by pushing error into MI
- Overall running such that cogging losses rarely limit Booster throughput

Cogging in Balance

- Cogging effects:
 - Later notch results in more loss
 - > Radial motion
 - Before trans: $\pm 1(2)$ mm
 - After trans: $\pm 2(4)$ mm
 - > GMPS must be controlled
 - > BDOT signal is vital
 - > Phaselock interferes
 - ➤ MI is more constrained

- Hardware running stably
 - > Very few glitches
 - Extraction losses reduced 80-90%
- Only method for multibatch
 - ➤ Adequate for today's running
- In the future:
 - Only a few tweaks in cogging algorithms are possible
 - Maybe inputs to other ramped systems
 - ➤ Higher intensity beam might require smaller range of movement
 - ➤ Phaselock can be redesigned
 - > Faster kickers?
 - **>** ...

Summary: Beam Delivered

- Booster cogging on multibatch cycles for slip-stacking and NuMI
 - > Sources of variation were identified, and eliminated where possible
 - System to enforce synch by feedback (feedforward)
 - ➤ System made operational ~ 1 yr ago
 - Over 30,000,000 cogged cycles
- Peak proton power to NuMI has approached 300 kW, achieving 10²⁰ protons

Booster Cogging

Robert Zwaska Fermilab

(University of Texas at Austin)

Accelerator Physics & Technology Seminar Dec. 8, 2005